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Abstract 

Given a special type of triplet of reciprocal-lattice vectors 
in the monoclinic and orthorhombic systems, there exist 
eight three-phase structure seminvariants (3PSSs) for a 
pair of isomorphous structures. The first neighborhood of 
each of these 3PSSs is defined by the six magnitudes and 
the joint probability distribution of the corresponding six 
structure factors is derived according to Hauptman's 
neighborhood principle. This distribution leads to the 
conditional probability distribution of each of the 3PSSs, 
assuming as known the six magnitudes in its first 
neighborhood. The conditional probability distributions 
can be directly used to yield the reliable estimates (0 or 
rr) of the one-phase structure seminvariants (1PSSs) in 
the favorable case that the variances of the distributions 
happen to be small [Hauptman (1975). Acta Cryst. A31, 
680-687]. The relevant parameters in the formulas for 
the monoclinic and orthorhombic systems are given in a 
tabular form. The applications suggest that the method is 
efficient for estimating the 1PSSs with values of 0 or rr. 

1. Introduction 

The procedures of crystal structure determination have 
been traditionally divided into two significantly different 
techniques, those for small molecules and those for 
macromolecules. In about the past ten or more years, it 
has been shown that both techniques, when properly 
integrated, could lead to more powerful methods of 
structure determination. Hauptman (1982a,b) success- 
fully realized the fusion of direct methods with 
isomorphous replacement (IR) as well as anomalous 
scattering (AS), and presented the probabilistic theory of 
two- and three-phase structure invariants (2PSIs and 
3PSIs) for both IR and AS cases. The first applications of 
the resultant formulas led to an enormous increase in the 
numbers of invariants whose values may be estimated 
reliably no matter what the fusion is. As a result, 
combination of the techniques of direct methods with IR 
or AS is increasingly facilitated. Many related papers 
have been published. Most of the problems in these 
studies concerned only structure-invariant estimates. For 
structure seminvariants, Velmurugan & Hauptman 
(1989), using the neighborhood principle for integrating 

© 1996 International Union of Crystallography 
Printed in Great Britain - all fights reserved 

direct methods with AS, derived the conditional prob- 
ability distribution of 1PSSs having values 0 or Jr 
through the joint probability distribution by embedding 
the 1PSSs into the 3PSIs and gave results of its 
applications (Velmurugan, Hauptman & Potter, 1989). 
Recently, we extended the theory of 2PSIs developed by 
Hauptman to two-phase structure seminvariants (2PSSs) 
in the AS case and, further, estimation of the 1PSSs (near 
0 or rr) was realized by combining the formula of the 
2PSSs with Cochran's distribution (Liu & Hu, 1994). In 
addition, we also advanced another method to estimate 
1PSSs by integrating Hauptman's theory of 3PSIs and 
the ~--~t relationship for an isomorphous pair of structures 
(Hu & Liu, 1995). It should be noticed that the latter 
method is also suitable for the AS case. In the present 
paper, we show again that the integration of direct 
methods and IR would improve the procedures for 
structure seminvariant estimates. 

Assume that the number of equivalent positions is m 
for a given space group. Let 

j=l 

be an n-phase structure seminvariant, then the following 
formula has to hold: 

(j_~l Hj)  "ro (1) ~N,  

where N is a positive, null or negative integer, r 0 is the 
position of permissible origins (Hauptman & Karle, 
1956), which depends on the rotation matrixes R s of the 
space group (Giacovazzo, 1980): 

(R s - I ) . r  0 = V ,  s = l , 2  . . . . .  m, 

where I is a 3 x 3 identity matrix and V a vector with 
zero or integer components. It follows that the n-phase 
structure seminvariant tP n depends on the rotation 
matrixes Rs. Therefore, in order to derive the formulas 
for estimating 1PSSs, it is possible first to construct a 
3PSS and then to expand its probability distribution in 
terms of Hauptman's neighborhood principle, as men- 
tioned below. 
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For a pair of isomorphous structures in the monoclinic 
or orthorhombic systems, when all atoms are in general 
positions, the respective normalized structure factors E a 
and G a are defined by 

N/m 
E n -- [En[ exp(igH ) = ~2o/2 ~ f ~ exp(i2zrHCj • r i ), 

i=1 j=l  

(2) 

N/m 
G n = IGn[ e x p ( i ~ .  ) = otg/2 ~ gi ~ exp(i2zrHC./• r i ), 

i=1 ./=1 

(3) 

where 
N 

am. = E f f f  g;, ~ (4) 
j=l  

C . / . r = R j . r + T j ,  j = l , 2 , . . . , m ,  (5) 

N is the number of atoms in the unit cell, r i is the position 
vector of the atom labeled i, the f / a n d  gi are zero-angle 
atomic scattering factors and therefore are equal to the 
atomic number Z i and C./denotes the symmetry operator 
of the jth equivalent position in the space group that 
contains a corresponding rotational component R./and a 
translational component rig.. 

There are four kinds of 1PSS with values 0 or Jr in the 
monoclinic and orthorhombic systems: (D2h,0,21, q)2h,2k,0, 
q)O,Zk,2t, 90,2k,0, which together are indicated by (Pn,. For 
a special type_o_f triplet of reciprocal-lattice vectors, 
H = hkl, H = hkl and H s, which satisfy (1), there are 
eight 3PSSs for an isomorphous pair of structures: 

091 = (pH -'~- qgt7.1 --}- (pH , 

o92 = O~i + Oa + 9 . , ,  

o93 = 9n + ~P~ + q~i,, 

o94 = ~ .  + q ) .  + g n , ,  

o95 = % + V,,~ + % ,  

096 - -  q)It -[" (/)I~I "[- 1/rH s , 

o)7 = 7Sn + ~ + ~Pns, 

098 = ~o. + ~ a  + ~PH,. 

The first neighborhood of each of the eight 3PSSs is 
defined to consist of the six magnitudes lEa I, lEa I, 
lEa, I, Iaul,  IG~I, [a . , l .  The formulas for estimating 
1PSSs with values 0 or zr are obtained ' y the derivation 
of the probabilistic distribution of these 3PSSs based 
on Hauptman's neighborhood principle (Hauptman, 
1975a,b) with some differences in detail. Owing to 
limitations of space, only the basics of the derivations are 
given here. 

2. The probabilistic distribution of  the 3PSSs 

2.1. The joint probability distribution of  the six structure 
factors E n, Eft, Ea , G n, Gn, Ga, 

It will again be assumed throughout that the number of 
equivalent positions is m in a given monoclinic or 
orthorhombic Space group for a pair of isomorphous 

structures. Their normalized structure factors E and G are 
defined by (2)-(5). Suppose that the independent atomic 
position vectors r i, i -- 1, 2 . . . . .  N/m,  are fixed and that 
the primitive random variable is the ordered triple (h, k, 1) 
of reciprocal vectors, which is assumed to be uniformly 
distributed over the subset (1) of the threefold Cartesian 
product S x S x S (S denotes reciprocal space). Then the 
structure factors E, ,  Eft, Ens, G n, Gf~, Gn, are functions 
of the primitive random variables h, k, !, so that they are 
themselves random variables. Denote by P = P(R l, R 2, 
R3, S1, $2, $3; 4'1,4"2, 4"3, tp~, tp2, qJ3) the joint probability 
distribution of the magnitudes IEnl, lEvi l, lEa, I, IGn[, 
]Gill, IGn,[ and the phases q9 n, ~ofi, q)n,, grn, ~P~, ~n, of 
the complex normalized structure factors E a, En, En,, 
G n, Gn, G n .  Then P is given by the 12-fold integral 
(Karle & Hauptman, 1958) 

3 / oo oo 2rr 2rr 

P =  I-I ([RkSk/(27r)4] f f f f Pk0"k 
k=l pk=O ak=O Ok=O Xk=O 

x exp{--i[RkP k c o s ( 0  k - 4"k) + Sk0"k C o s ( x k  --  ~/k)]}) 

N/m 3 
x ]-I qj I-[ (dpkdakdOkdXk), (6) 

i=1 k=! 

where 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

From the 

qj "= qj(Pl, P2, P3, 0-I, 0"2, 0"3; 0 1 , 0 2 ,  03, X1, X2, X3) 
• 1/2 = (exp{(ifi/a2o)[Pl cos(2zrH • rj - 01) 

+ Pl  c o s ( 2 z r l ' I R 2  " r j  + 2 z r H .  T 2 - 01) + . . .  

+ Pl cos(2zrHRm • rj + 2zrH. T m - 01) 

_+2 P2 COS( 27rISl " r j  - -  02) + P2 cos(2zrI~IR2 • rj 

- ~  2 z r H .  T 2 - 02) + . . .  + P2 c°s(2zdZIRm " rj 

2zrH. T m - 02) + P3 cos(2zrHs " rj - 03) 

/93 c o s ( 2 z r H s R  2 • r j  + 2zrHs  • T 2 - 03) + . . .  

P3 c°s(2zrHsRm " rj + 2zrH~ • T m - 03) ] 
• 1 / 2  

0g/°t02 )[0"I cos(2zrH • rj - X1) 

0"1 cos(2zrHRz • rj + 2zrH. T 2 - XI)  + ' "  

O" 1 cos(2zrHR m • rj + 2zrH. T m - X1) 

0-2 cos( 2M~I" rj - X2) + 0"2 cos(2zrITtR2 " rj 

2rrH. T 2 - X2) _~t_ . . . 

0"2 c°s(2M~IRm " r . /+  2zrH. T m - X2) 

0"3 c ° s ( 2 z r H s  " r . / -  X3) + 0"3 c ° s ( 2 : r r l t s R 2  " r./ 

2zrH~ • T 2 - X3) + . . .  

o" 3 cos(2zrH~R m • r . /+ 2zrH~ • T m - X3)]})h,k,l" 

work of Hauptman (1982a), 

q./~_ 1 - ((m/a){(fj2/ot20)[p 2 + p2 + p2 + 2pip 2 

x cos (01  --[- 02) --[-/02 c o s  203] 
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+ + + + 20"10"2 Cos(x1%" X2) 
1/2 1/2 

+ 0.2 COS 2X3 ] + (2fjgj/ot20 0~02 )[010.1 COS(01 -- X1) 

-+-/920"2 COS(02 -- X2) -JI-/930" 3 COS(03 -- X3) 

-[- P10.2 COS(01 -[- X2) "It-/020"1 COS(02 "It- Xl) 

+ P30.3 cos(e3 + X3)]} + (im/4){(fj3/ot~/o2) 

x [p2 + p2 + 2pip 2 cos(01 + 02)]P3 cos(03 + nzr) 
3 3/2 2 + (g)/ao2 )[0.1 + 0.2 z + 20.t0.2 cos(x1 + X2)]0.3 

2 1/2 2 
X Cos(x  3 -1- nrc) + (f~ gj/Ot2OOt02 )[Pl + p2 

+ 2Pl P2 cos(0x + 02)]0.3 cos(x3 + nzr) 
2 1/2 + (fig)/or2 ° a02)[o~ + 0"2 + 20.10. 2 cos(xa + x2)lP3 

2 1/2 
X COS(03 + mr) + (fj gj/Ot2OOt02 ) 

x [2pl0. 2 cos(01 +X2) + 2P20.1 cos(02 + X1) 

+ 2Pl0"1 cos(01 - Xl) + 2P20.2 c o s ( 0 / -  X2)]P3 
2 1/2 

X COS(03 -a t- mr) + (fig)/0~20 ~02)[2P10.2 COS(01 "+" X2) 

+ 2P20.1 COS(02 + Xl) + 2P10.1 Cos(x1 -- 01) 

+ 2P20. 2 Cos(x  2 -- 02)]0" 3 Cos(x  3 -~- nrr)}), 

where n is an integer that depends on the space group as 
listed in Table 1. From (4) and 

I-[ qj ~- exp 1/m - 1 , 
j=l 

the expression for I-I;/1 qj can be easily obtained. 
Substitution of this expression into (6) and completion 
of the 12-fold integral give 

P _~ c o exp([1/(1 - az)](R3 2 cos 2~  3 + $3 2 cos 2q~3) 

+ d 1 cos(~ 3 + mr) + d 2 COS(lff 3 + nT/') 

+ 4/3R3S 3 sin ~3 sin q% + {[2R1R2/(1 - off)] 

+ 2/30R1R2[/31R 3 c o s ( ~  3 "]- nzr) 

+/34S3 cos(~/3 -4- mr)]} cos(q~ 1 -+- t~2) 

+ {[2S1S2/(1 - a2)] + 2/30S1S2[/32R 3 cos(~ 3 + nzr) 

+/35S3 cos(q~3 + nzr)]} cos(q/1 + q~2) 

+ {2/3 + 2/30[f14R 3 COS(~ 3 "1"- n2T) +/32S3 

X COS(~t3 "31- nrc)]J[R1S 1 cos(~ 1 - I//1) 

+ R~S~ c o s ( ~  - ~ ) l  + { -2~  + 2¢JoiCI~R ~ cos(q~ 

+ nrr) +/32S3 cos(tP 3 + nrc)]}[R1S 2 cos(q~ 1 + tP2) 

+ (7) 

where 

R2S1 c o s ( ~ 2  + I/'/1)]), 

x e x p  - ( R ~ + S ~ ) / ( 1 - ~ 2 )  , 

dl =/3o[/31 ( R2 + R2) +/32( $2 + $2) +/33]R3, 

d 2 =/30[/34(R 2 "q- R 2) +/35(S 2 + S 2) +/36]83, 

Ol -- 0111/(01200102) 1/2, (8) 

/3 = o~/(1 - off), (9) 

/30 = 2/[(1 - a2)(Ot2oOtoz) l /Z] 3 , (1 O) 

/31 = Ogl -- Od30d2 + 30t20~3 -- 30~4 '  (11) 

/32 = 0/2CI/1 --  OdCl/2 "t- (1 "It- 20t2)0~3 -- (2 + 0~2)0~0t4, (12) 

/33 = 2(1 - c~2)[c~a2 - oq + 3aa  4 - (1 + 2~2)c~3], (13) 

/34 = 0d20/2 -- ~ 1  "~ (1 -a t- 2~2)0~4 -- (2 + 0~2)0~0~3, (14) 

/35 = 0~2 -- 0/30~1 "~" 3C~20~4 -- 3C~0~3' (15)  

/36 = 2(1 - o~2)[o~Otl - o~ 2 + 3otc~ 3 -- (1 + 2o~2)o~4], (16) 

~3/2ru (17) Ogl - -  ~02 ~30, 

tv3/2"~ (18) £~2 = ~20 t~03, 

1/2 (19) Og 3 = t~20~02 0~12, 

1/2 (20) O~ 4 = 0~20 0~020~21. 

2.2. The conditional probability distribution of the 
3PSSs, given the six magnitudes IEnl, IEt~I, IEn, I, 
IGnl, IGn[, IGH, I in itsfirst neighborhood 

Refer to §2.1 for the probabilistic background. Let 

IEnl = e l ,  IEnl = e2, IEH, I = e3, (21) 

Ianl = S1, IGnl = $2, IGn, I = $3. (22) 

Then, the 3PSS 091 = 9n + q~ + 9n,, as a function of the 
primitive random variable (h, k,i), is itself a random 
variable. Denote by P1 = P1(£211Rl, R2, R3, $1, $2, $3) the 
conditional probability distribution of 091 , given (21) and 
(22), then P1 is derived from (7) by fixing R 1, R2, R3, $1, 
$2, $3, integrating P with respect to qJl, qJ2, qJ3 from 0 to 
2zr and multiplying by a suitable normalizing factor. The 
final formula is 

P1 "" (1/K1)exp[(-1)"A1 c°s 121], (23) 

where 

K 1 = 2rrlo(A1), (24) 

A1 =~{R3[~l(R1 -}- R2) 2 +/32(S12 + $22) + ]331 

+ 2/34(R~ + R2)R3(S~T~ +S2T2)+ $3[/34(G + R2) 2 

+ / 3 5 ( S  2 + S 2) +/361T3 + 2/32S1S2R3T1T2 

+ 2/32(R1 + R2)S3(S1T1 + S2T2)T3 

+ 2/35S1S2S3T1T2T 3 }, (25) 

the function Tj is the ratio of two modified Bessel 
functions of order one and zero: 

Tj = II(2/3RjS)/Io(2/3RjS t ,  j = 1, 2, 3, (26) 
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and the fl and flj ( j  = 0, 1, 2, 3, 4, 5, 6) are defined by 
(8)-(20). 

With the same procedure as described above, 
the conditional probability distributions 
Pi = Pi(S-2ilRI , R2, R3, S1, S 2, $3) of the 3PSSs 0)i 
(i = 2, 3, 4, 5, 6, 7, 8) are obtained. These results can 
be expressed as 

Pi "~" (1/Ki)exp[(-1)nAicos ~i], 

K i : 2yrlo(Ai), i = 1, 2 . . . . .  8, 

where A~ is given by (25) and 

0) 2 

A 2 = 

(27) 

(28) 

flo{R3[fl1(R~ + R2) + fl2($1 + $2) 2 + f13] 

+ 2fl4(S, + S2)R3(R1TI + R2T2) + S3[fl4(R 2 + R 2) 

+ fls(S1 + $2) 2 + f16]T3 + 2fllR1R2R3TIT2 

+ 2fl2(S1 + S2)S3(R1T1 + R2T2)T3 

-1- 2/34RIR2S3T1T2T3 }, (29) 

w3 = ~On + ~P~ + ¢PH,, 

A 3 -- flo{R3[/31(R 2 + R~) +/32(S~ + $22) +/33 + 2/34R1S2] 

+ 2SIR3(/32S 2 + / 3 4 R I ) T  1 + 2R2R3(/31R 1 +/34S2)T2 

-[- S3[/34( R2 q- R2) + fls( $2 + $2) +/36 

+ 2/32R1S2]T3 + 2/34S1R2R3T1T2 

"[- 231S3(/32R1 "q- /35S2)TIT 3 

+ 2R2S3(f12S2 + fl4R1)T2T3 + 2f12S1R2S3TIT2T 3 }, 

(30) 

0)4 = 1/rH "q- q9171 "-~ ~0Hs , 

a4 = flo{R3[fl,(R 2 + R 2) +/32(S 2 + S~) +/33 + 2/34S1R2] 

+ 2R1R3(fl~R2 -t- fl4SI)T1 + 2S2R3(/31S 1 + f14R2)T2 

+ S3[/34(R, ~ + n~) +/3~(Sl ~ + S~) 

+/36 + 2/3zS1R2]T3 + 2/34R1SzR3T1T2 

+ 2R1S3(/32S1 -b/34R2)T1T 3 + 2S2S3(/31R 2 

+/35SI)T2T3 + 2/32RlS2S3T1T2T3 }. (31) 

It is easy to obtain the formulas of A i for the other 0)i 
(i = 5, 6, 7, 8) from (25), (29), (30) and (31), e.g. A 5 
from (25) and A 6 from (29), by means of substituting Rj 
by Sj. and Sj by Rj ( j  = 1, 2, 3) and interchanging/31 and 
/35' /32 and /34' /33 and /36" 

Equations (23) and (27) are obtained by making use of 
the following conditions: 

q9 n + ~0 A = 0, ~ri + ~PH = 0, (32) 

~o n + ~pf~ "~ 0, ~n  + ¢PI~ -~ 0, (33) 

where the validity of (33) requires that [2ot/(1 - ofl)]RlS 1 
is large (Hauptman, 1982a). It is also because of (32) and 
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Table 1 The types of  seminvariant vectors and n values 
for  monoclinic and orthorhombic systems 

Type Space group and n 
P2 P21 

2h 0 21 0 k 

Pm Pc 
0 2 k 0  0 1 

P222 P2221 P21212 P212121 
2h 2k 0 0 1 0 l + h 
0 2k 2l 0 0 k + l  h + k  
2h 0 21 0 1 k + l  k + l  

Pmm2 Pmc21 Pcc2 Pma2 Pca21 
2h 2k 0 0 l 0 0 l 

Pnc2 Pmn21 Pba2 Pna21 Pnn2 
2h 2k 0 0 l + h 0 l 0 

(33) that the formula (27) can be used to estimate the 
1PSSs ¢PN, or apn ,. 

In the calculation of Ai,  the parameters flj have an 
important effect. Based on some preliminary calcula- 
tions, it appears that /31 < 0, /32 < 0, /33 > 0, /34 > 0, 
/35 > 0, /36 < 0. Formula (27) is completely general and 
includes the special case of a native protein and a heavy- 
atom isomorphous derivative. When the f structure is 
a native protein and the g structure a heavy-atom 
derivative, the parameters described above can be further 
simplified to 

ot = 1/(1 + p 2 )  1/2, 

/3 = (1 -qt-p2)l/2/p2, 

/30 = 2(1 +p2)3/2/(ot20P2) 3, 
3/2 _a_ ,, ~3/2 

/31 -c~20 c~30(P3 - P23)/(1 "-  ~ P ' 2 )  , 

3/2 . r .  r~ ~1/2 
/32 - -  --0/20 0~30P3/1,1 "-[-/-'21 , 

3/2 
/33 "-- 20~20 Ot30P2(P3 --  p22)/(1 + P2) 3/2, 

3/2 
/34 --" 0~20 Ot30P3/(1 + P 2 ) '  

3/2 
/35 = Or20 ff30P3, 

3/2 
/36 - -  --20~20 Ot30P2P3/(1 -I-P2),  

where P2 -- (c~02 - c~20)/~20, P3 = (no3 - 0t30)/c~30 and 
or02 -or20 and c%3 - 0 %  can be easily calculated by the 
summations over the heavy atoms only. 

3. Appl icat ions  to the 1PSS est imates  

3.1. The formulas for  the 1PSS estimates 

When (32) holds, the probability distribution of the 
1PSS ~0n~ is directly obtained from those of w 1 and m2: 

Pi(~Ons)~-- (1/Ki)exp[(-1)nAicoscPns], i =  1,2. (34) 
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Table 2. Estimated results of the 1PSSs ~on~ accumulated in groups according to given minimum values of IAI for the 
three pairs of isomorphous structures 

I: rubredoxin. II: ferrocytochrome c. III: cytochrome %50. N: the number of ~0ns in group. (IAI): average of IAI values over the 1PSSs in the group. 
%: the percentage of q~n, correctly estimated. 

I II HI 
N (]AI) (IE - GI) % N (IAI) (IE - GI) % N (IAI) (IE - GI) % 

Total 78 46.0 0.26 92.3 371 22.5 0.23 78.7 236 24.1 0.31 84.7 
IAI > 1.0 73 49.1 0.26 95.9 296 28.1 0.27 85.5 204 27.9 0.34 89.2 
[AI > 3.0 68 52.6 0.27 97.1 224 36.5 0.32 93.3 162 34.6 0.38 92.0 
IA] > 5.0 63 56.5 0.28 98.4 190 42.3 0.35 97.4 140 39.5 0.41 97.1 

For a given J ~ ,  considering all the reflections H and the 
corresponding centrosy_mmetric reflections I~I so that 
each of the triplets (H, H, Hs) satisfies (1), (34) becomes 

Pi(~Pu,)'~Ciexp[~,(-1)nAicosqgn,], i - -  1,2, 
rl,fi 

(35) 

where C i is a normalizing constant. In the practical 
application, an average A value over A 1 and A 2 can be 
used. Then we have 

P(tPn) "~ [27rlo(A)] -1 exp(A cos ¢pn ) ,  

where 

(36) 

A = 1 ~ ( _ l ) n ( A l  + A2). (37) 
!-i, I~I 

Equation (36) has a unique maximum at ~0us = 0 or zr 
according as A > 0 or A < 0, respectively. Therefore, a 
reliable estimate of the seminvariant ~0n~ can be obtained 
by calculating the sign of A when IA] is large. Similarly, 
the seminvariant ¢rns can be estimated from the 
distributions of 095 and 0) 6 with the same approach. 

3.2. Test calculations 

All the test calculations were made using error-free 
diffraction data. The normalized structure factors E n and 
Gn were calculated from the known atomic coordinates 
of three protein structures and their heavy-atom deriva- 
tives as follows. 

I: rubredoxin (Adman, Sieker, Jensen, Bruschi & 
LeGaU, 1977), space group P21, 389 atoms in the 
asymmetric unit (not including water molecules), A 
derivative was made by replacing the Fe atom in the 
native protein by a Pt atom. A set of reflections at 1.5 ,~ 
resolution was calculated. 

II: ferrocytochrome c (Takano & Dickerson, i981), 
space group P21212, 900 atoms in the asymmetric 
unit. A heavy-atom derivative was constructed by 
replacing the O atom of a water moleculeobY a Pt atom. 
The resolution of the reflection set is 2.0 A. 

HI: cytochrome %50 and its PtCI 4- isomorphous 
derivative (Timkovich & Dickerson, 1976), space group 

P212121, 1017 atoms in the asymmetric unit for the 
native protein. ~tensity data were generated to a 
resolution of 2.5 A. 

The seminvariants qgns were estimated based on (36) 
and (37) for each pair of isomorphous structures. The test 
results are given in Table 2. As is shown in Table 1, tpns 
is of one form, (02h,0,2/, for I, and three forms, ~02h,2k, 0, 
~00,2k,2 t, ~02h,0,2 t, for II and III. The first row of Table 2 
gives the total number of q~s at the given resolution and 
the percentage of tpn s estimated correctly. The results for 
those seminvariants having IAI values larger than 1.0, 3.0 
and 5.0 are shown in rows 2, 3 and 4, respectively. From 
Table 2, the following conclusions may be made. 

(i) Formulas (36) and (37) yield reliable estimates of 
the 1PSSs having values 0 or rr for all three structures. 
The larger the IAI values, the more reliable are the 
estimates. 

(ii) Reliability of the estimation increases with the 
increase of the differences between the normalized 
structure-factor magnitudes of an isomorphous pair. 

(iii) Efficiency of the estimation is related to the 
complexity of structure. Especially for those seminvari- 
ants with smaller IAI values, the results of I are obviously 
better than those of both II and III. When IAI > 3.0, more 
than 90% of the seminvariants are correctly estimated for 
the three structures. Therefore, for a pair of isomorphous 
structures consisting of a native protein having as many 
as 1000 atoms and a Pt-atom derivative, the present 
method is expected to be useful. 

4. Concluding remarks 

The integration of direct methods with isomorphous 
replacement has been applied to the estimation of the 
1PSSs. The derivations of the conditional probability 
distributions of a special type of 3PSSs have been stated. 
These distributions directly lead to an approach to 
estimating the 1PSSs. The analysis also includes the 
special case that one member of the pair is a native 
protein and the other member is a heavy-atom iso- 
morphous derivative. The initial applications of this 
work, using error-free data from the three protein 
structures, have shown satisfactory results. 
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